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The effect of compressibility on the critical swirl level for breakdown of subsonic
vortex flows in a straight circular pipe of finite length is studied. This work extends
the critical-state concept of Benjamin (1962) to include the influence of Mach number
on the flow behaviour. The analysis is based on a linearized version of the equations
for the motion of a steady, axisymmetric, inviscid and compressible swirling flow of a
perfect gas. The relationship between the velocity, density, temperature and pressure
perturbations to a base columnar flow state are derived. An eigenvalue problem is
formulated to determine the first critical level of swirl at which a special mode of a
non-columnar small disturbance may appear on the base flow. It is found that when
the characteristic Mach number of the base flow tends to zero the eigenvalue problem
and the critical swirl are the same as defined by Wang & Rusak (1996a, 1997a) in their
study of incompressible swirling flows in pipes. As the characteristic Mach number
is increased, the critical swirl level increases and the flow perturbation expands in
the radial direction. As the Mach number is increased toward a certain limit value
related to the core size of the vortex, the critical swirl reaches very large values and
becomes singular. The present results indicate that the axisymmetric breakdown of
high-Reynolds-number compressible vortex flows may be delayed with the increase
of the flow Mach number.

1. Introduction
High-performance flight vehicles, especially fighter aircraft designed for transonic

and supersonic flight, often require combinations of slender bodies and thin, swept-
back lifting surfaces with sharp leading and trailing edges. These configurations
generate considerable aerodynamic lift forces at subsonic speeds and at high angles of
attack, largely due to the induced flow generated by the vortices that are shed from the
lifting surfaces and the nose of the configuration. Increasingly, the desire to improve
the performance of such vehicles in high-g manoeuvres has lead to the widening of
their operational envelope of flight to even higher angles of attack. However, at a
certain angle of attack, the cores of the concentrated vortices may suddenly burst
near the wing trailing edge. This phenomenon is called vortex breakdown or burst
(see Peckham & Atkinson 1957 and Lambourne & Bryer 1962). Further increase of
incidence results in the displacement of the breakdown zone along the vortex axis
toward the wing apex. When the breakdown point occurs above or in front of the
wing mid-chord, it significantly affects the induced flow field around the wing, causes
the loss of the lift force, and leads to its stall. This significantly limits the manoeuvres
of the aircraft at subsonic Mach numbers of flight. The breakdown phenomenon
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may also be unsteady or asymmetric and, therefore, can result in the appearance
of undesired asymmetric loading, lateral forces and moments, and can significantly
affect the stability of high-g manoeuvres (Delery 1994). Therefore, understanding and
predicting the effect of compressibility or Mach number of flight on the breakdown of
high-Reynolds-number vortex flows is essential for the operation of modern fighters
and the design of future vehicles.

Theoretical analyses of vortex breakdown have concentrated on an incompressible
axisymmetric swirling flow in a tube or in a free domain. Several explanations
were proposed: the critical-state concept (Benjamin 1962), the solitary trapped-wave
approach (Leibovich & Kribus 1990), the special state of a semi-infinite stagnation
zone (Keller, Egli & Exley 1985), the analogy to boundary layer separation (Hall
1972), the nature of swirling flow states in a diverging stream tube (Buntine &
Saffman 1995), the appearance of hydrodynamic instabilities (Lessen, Singh & Paillet
1974; Lessen & Paillet 1974; Leibovich & Stewartson 1983), and the positive feedback
mechanism between the generation of negative azimuthal vorticity and the divergence
of stream-function surfaces (Brown & Lopez 1990). Some of the approaches show
a possible relationship between the axisymmetric breakdown and the critical-state
concept. Other approaches emphasized the importance of an adverse pressure gradient
or viscosity in the appearance of a separation (breakdown) zone along the vortex
axis.

In a recent set of papers, Wang & Rusak (1996a, b, 1997a, b), Rusak, Judd &
Wang (1997), Rusak, Wang & Whiting (1998a), Rusak, Whiting & Wang (1998b)
and Rusak (1998, 2000) have presented a theoretical approach which describes the
axisymmetric vortex breakdown process. The combination of results from various
papers shows that vortex breakdown appears as a result of a nonlinear competition
of effects and parameters. The main parameter is the swirl ratio characterizing the
vortex flow (Wang & Rusak 1997a and Rusak et al. 1998a, b). Other effects include the
inviscid instability mechanism of vortex flows (Wang & Rusak 1996a, b), the viscosity
(Wang & Rusak 1997b), the adverse pressure gradient (Rusak et al. 1997), and the
upstream vorticity perturbations (Rusak 1998). The breakdown of high-Reynolds-
number vortex flows is a transition from a concentrated vortex flow that becomes
unstable when the swirl ratio is above a certain limit level to a flow with a separation
(breakdown) zone at a lower level of energy.

Although much progress has been made in the research on the mechanisms of
vortex breakdown, none of the previous theoretical studies investigated the effects
of flow compressibility or Mach number on the nature of the breakdown of vortex
flows. These effects are specifically important in studying the aerodynamic and flow
characteristics around wings and airplanes operating at subsonic speeds, where the
flight Mach number is not small and may reach values of 0.2 to 0.7. In such cases,
compressibility effects may create changes in the thermodynamic properties of the
flow and as a result of the balance of mass, momentum and energy may change the
nature of the interaction between the velocity components. Such global changes in
the flow may modify the critical swirl level for the appearance of vortex breakdown
from its incompressible (low Mach number) level to different values, especially when
the Mach number is sufficiently high.

Only a limited number of numerical studies has focused on investigating the vortex
breakdown in compressible vortex flows. The recent numerical studies by Melville
(1996) and Herrada, Prez-Saborid & Barrero (2000) have demonstrated that increasing
the characteristic Mach number of the flow results in an increase of the vortex swirl
ratio at which breakdown appears for the first time as well as a decrease in the
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severity of breakdown at a given swirl ratio. However, there is no theoretical model
that describes this behaviour.

The present paper investigates the effect of compressibility on the critical swirl level
for breakdown of subsonic vortex flows in a circular pipe of finite length. It is a first
step toward developing an understanding of the dynamics of compressible flows with
swirl and vortex breakdown. This work extends the critical-state concept of Benjamin
(1962) and Wang & Rusak (1996a, 1997a) to include the influence of Mach number
on the flow behaviour. The analysis is based on a linearized version of the equations
for the motion of a steady, axisymmetric, inviscid and compressible swirling flow of
a perfect gas. An eigenvalue problem is formulated to determine the first critical level
of swirl at which a special mode of a non-columnar small disturbance may appear
on the base flow. As the characteristic Mach number is increased, the critical swirl
level increases and the flow perturbation expands in the radial direction. As the Mach
number is increased toward a certain limit value related to the core size of the vortex,
the critical swirl reaches very large values and becomes singular. The present results
indicate that the breakdown of compressible high-Reynolds-number vortex flows may
be delayed with the increase of the flow Mach number.

2. Mathematical model
A steady, inviscid, non-heat conducting, compressible axisymmetric flow with swirl

of a perfect gas is considered in a finite-length, circular, straight pipe of radius rt. The
pipe centreline is the x̄-axis where 0 6 x̄ 6 x0rt and the radial distance r̄ ranges within
0 6 r̄ 6 rt. The flow thermodynamic properties may be described by the perfect gas
equation of state

P̄ = ρ̄RT , (1)

and the fields of radial, circumferential and axial velocities ū, v̄, w̄ respectively, are
related to the fields of the pressure P̄ , density ρ̄ and temperature T through the
continuity, momentum and energy equations:

(ρ̄ū)r̄ +
ρ̄ū

r̄
+ (ρ̄w̄)x̄ = 0, (2)

ρ̄

(
ūūr̄ + w̄ūx̄ − v̄2

r̄

)
= −P̄r̄ , (3)

(
ūv̄r̄ + w̄v̄x̄ +

ūv̄

r̄

)
= 0, (4)

ρ̄(ūw̄r̄ + w̄w̄x̄) = −P̄x̄, (5)

ρ̄Cp(ūT r̄ + w̄T x̄)− (ūP̄r̄ + w̄P̄x̄) = 0. (6)

Here, R is the specific gas constant and Cp is the gas specific heat at constant pressure
and is assumed constant.

We study the flow in a pipe with a specific set of conditions posed on the boundaries
to reflect the physical situation. In order to satisfy the axisymmetric condition, along
the pipe centreline r̄ = 0 we set

ū(x̄, 0) = 0, v̄(x̄, 0) = 0, w̄r̄(x̄, 0) = 0, T r̄(x̄, 0) = 0, P̄r̄(x̄, 0) = 0 (7)
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for 0 6 x̄ 6 x0rt. Along the pipe wall r̄ = rt, the normal velocity vanishes, i.e. there is
no radial velocity:

ū(x̄, rt) = 0 (8)

for 0 6 x̄ 6 x0rt. We prescribe at the pipe inlet x̄ = 0 the profiles of the axial speed,
circumferential speed, azimuthal vorticity (η̄ = ūx̄ − w̄r̄) and temperature as

w̄(0, r̄) = U0w0

(
r̄

rt

)
, v̄(0, r̄) = ωU0v0

(
r̄

rt

)
,

η̄(0, r̄) =
U0

rt
η̄0

(
r̄

rt

)
, T (0, r̄) = T 0T0

(
r̄

rt

)
(9)

for 0 6 r̄ 6 rt. Here, U0 is the axial speed at the inlet centreline, ω is the swirl ratio of
the incoming flow, and T 0 is the temperature along the inlet centreline. The inlet flow
is characterized by a Mach number M0 = U0/a0, where a0 is the isentropic speed of

sound at the inlet centreline, a0 =
√
γRT 0 where γ is the ratio of specific heats of the

perfect gas (in the examples in § 4 we use air as the working fluid for which γ = 1.4
at temperatures below 300 K, see Thompson 1988 p. 640). Note that w0r̄(0) = 0,
v0(0) = 0 and T0r̄(0) = 0 should be used for symmetry at the inlet centreline. We also
consider in the present paper the case where there is zero axial gradient of the radial
speed along the pipe inlet and the inlet azimuthal vorticity is fixed, i.e.

η̄0 = −w̄0r̄ or ūx̄(0, r̄) = 0 for 0 6 r̄ 6 rt. (10)

This assumption does not limit the present analysis and results. The effect of
general azimuthal vorticity profiles at the inlet is described in Rusak (1998) for
an incompressible flow and can be included in the present approach in a similar way
but is beyond the scope of this paper. Also, at the inlet centreline the pressure is
fixed, i.e.

P̄ (0, 0) = P̄0. (11)

We assume no radial velocity and no axial gradients of the thermodynamic properties
along the pipe outlet at x̄ = x0rt, in accordance with an expected columnar flow state,
i.e.

ū(x0rt, r̄) = 0, T x̄(x0rt, r̄) = 0, ρ̄x̄(x0rt, r̄) = 0 (12)

for 0 6 r̄ 6 rt.
Similar flow boundary conditions were considered in the analysis of Wang & Rusak

(1997a) for an incompressible (constant temperature) swirling flow in a finite-length
pipe. These conditions reflect the physical situation in an experiment on a high-
Reynolds-number compressible flow in a pipe. Similar conditions were also used by
Beran (1994) in his unsteady compressible flow simulations of vortex breakdown.
The boundary conditions (7)–(12) also formulate a basic problem through which the
interaction between the flow swirl and compressibility can be studied and results may
shed light on the physics of vortex flows.

A basic steady-state solution of the problem formulated by the above equations
(1)–(6) and boundary conditions (7)–(12) is a columnar state where for every Mach
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number M0 and swirl level ω,

w̄(x̄, r̄) = U0w0

(
r̄

rt

)
, v̄(x̄, r̄) = ωU0v0

(
r̄

rt

)
, ū(x̄, r̄) = 0, T (x̄, r̄) = T 0T0

(
r̄

rt

)
,

P̄ (x̄, r̄) = P̄0P0

(
r̄

rt

)
, P0

(
r̄

rt

)
= exp

(
γM2

0ω
2

∫ (r̄/rt)

0

v2
0(r̄∗/rt)

(r̄∗/rt)T0(r̄∗/rt)
d

(
r̄∗

rt

))
,

ρ̄(x̄, r̄) = ρ̄0ρ0

(
r̄

rt

)
, ρ0

(
r̄

rt

)
= P0

(
r̄

rt

)/
T0

(
r̄

rt

)
, P̄0 = ρ̄0RT 0


(13)

for 0 6 x̄ 6 x0rt. We use equations (1)–(12) to study the possible appearance of a
steady perturbation to the set of columnar states at a fixed subsonic Mach number
0 6 M0 < 1. Specifically, we look for the critical level of swirl where such a
perturbation appears for the first time as the swirl level is increased.

3. Small-disturbance analysis and the critical state
We define r = r̄/rt, x = x̄/rt. A perturbed columnar state may be described by

ρ̄ = ρ̄0(ρ0(r) + δ1ρ1(x, r) + · · ·), (14)

T = T 0(T0(r) + δ1T1(x, r) + · · ·), (15)

P̄ = P̄0(P0(r) + δ1P1(x, r) + · · ·), (16)

w̄ = U0(w0(r) + ε1w1(x, r) + · · ·), (17)

ū = U0(ε1u1(x, r) + · · ·), (18)

v̄ = U0(ωv0(r) + ε1v1(x, r) + · · ·), (19)

where the parameter 0 < δ1 � 1 represents perturbations to the thermodynamic
properties and the parameter 0 < ε1 � 1 represents perturbations to the velocity
components. Substituting these expressions into (1)–(6) gives the base flow relations
and the steady linearized equations of motion of a compressible and inviscid flow:

equation of state

O(1): P0 = ρ0T0, (20)

O(δ1): P1 = ρ1T0 + ρ0T1; (21)

continuity equation

O(ε1, δ1): ε1

(
ρ0ru1 + ρ0u1r + ρ0

u1

r
+ ρ0w1x

)
+ δ1(ρ1xw0) = 0; (22)

r-momentum equation

O(1): P0r = γM2
0ρ0ω

2 v
2
0

r
, (23)

O(γM2
0ε1, γM

2
0δ1, δ1): γM

2
0

[
ε1

(
ρ0w0u1x − 2

r
ωv0ρ0v1

)
− δ1

(
ρ1ω

2 v
2
0

r

)]
= −δ1P1r;

(24)
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θ-momentum equation

O(ε1): ωu1v0r + w0v1x +
ωv0

r
u1 = 0; (25)

x-momentum equation

O(γM2
0ε1, δ1): γM

2
0ε1(ρ0w0ru1 + ρ0w0w1x) = −δ1P1x; (26)

energy equation

O(ε1, δ1):

(
γ

γ − 1

)
[ε1(ρ0u1T0r) + δ1(ρ0w0T1x)]− [ε1(u1P0r) + δ1(w0P1x)] = 0; (27)

where the relation Cp/R = γ/(γ − 1) has been used.
From the base flow equations (20) and (23), it can be shown that

P0 = ρ0T0, P0r = γM2
0ρ0ω

2 v
2
0

r
.

Then,

P0r

P0

= γM2
0ω

2 v
2
0

rT0

(28)

and from (9) P0(0) = 1. The solution of (28) gives

P0(r) = exp

(
γM2

0ω
2

∫ r

0

v2
0(r∗)

r∗T0(r∗)
dr∗
)
. (29)

The r- and x-momentum equations (24) and (26) show that

δ1 = γM2
0ε1. (30)

Also, using (9)–(11) and (15)–(19) we find that

T1(0, r) = w1(0, r) = v1(0, r) = u1x(0, r) = 0 for 0 6 r 6 1 and P1(0, 0) = 0. (31)

Applying (21), (24), and (31) at x = 0 shows that also

P1(0, r) = ρ1(0, r) = 0 for 0 6 r 6 1. (32)

Then, using the linearized continuity equation (22), we have

1

r
(rρ0u1)r + (ρ0w1 + γM2

0ρ1w0)x = 0. (33)

Let y = r2/2. A perturbation stream function ψ1(x, y) is defined by

ρ0u1 = − ψ1x√
2y

and ρ0w1 = ψ1y − γM2
0ρ1w0, (34)

where (31) and (32) are used and where ψ1(0, r) = 0 for 0 6 r 6 1.
Let K = rv be the circulation function and K0 = rv0 the base-flow circulation func-

tion. The linearized θ-momentum equations (25) and (31) show that the perturbation
to the circulation function must satisfy

K1 = rv1 =
ωK0y

w0ρ0

ψ1. (35)

Differentiating (24) with respect to x and (26) with respect to r, subtracting one
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from the other, using relations (30), (34) and (35), and multiplying the result by
(−1/rw0) gives following equation relating ψ1 and ρ1:

ψ1yyx+
ψ1xxx

2y
+

(
ω2K0K0y

2y2w2
0

− w0yy

w0

)
ψ1x + γM2

0

(
ω2K2

0

4y2w0

ρ1x − 2w0yρ1x − w0ρ1xy

)
=0.

(36)

Note that when M0 = 0 the effect of the density perturbation on the stream function
perturbation disappears.

To find another relation between ρ1x and ψ1, we first use (30) and the linearized
energy equation (27) which together give

γM2
0ρ0T1x =

(
T0y

w0

− γ − 1

γ

P0y

ρ0w0

)
ψ1x + (γ − 1)M2

0P1x. (37)

Also, from (26) and (34) we have

P1x = w0yψ1x − w0(ψ1xy − γM2
0w0ρ1x). (38)

Differentiating (21) with respect to x and using (37) and (38) gives

ρ1x =
1

γM2
0 (T0 −M2

0w
2
0)

[
ψ1x

(
M2

0w0y − T0y

w0

+
γ − 1

γ

P0y

ρ0w0

)
− ψ1yxM

2
0w0

]
. (39)

Also, from (37)–(39) we have

P1x =
w0

T0 −M2
0w

2
0

[
ψ1x

(
w0y

w0

T0 − T0y +
γ − 1

γ

P0y

ρ0

)
− ψ1xyT0

]
, (40)

T1x =
w0

ρ0(T0 −M2
0w

2
0)

[
ψ1x

(
γ − 1

γ

w0y

w0

T0

+
T0 − γM2

0w
2
0

γM2
0w

2
0

(
T0y − γ − 1

γ

P0y

ρ0

))
− ψ1xy

γ − 1

γ
T0

]
. (41)

Substituting (39) into (36), using (28), and defining Ω = ω2 gives an equation for
the stream function perturbation ψ1:

ψ1yyx

T0

T0 −M2
0w

2
0

+
ψ1xxx

2y

+ψ1yx

[
− γM2

0ΩK
2
0

4y2(T0 −M2
0w

2
0)

+
(T0 − 2M2

0w
2
0)T0y + 2M2

0w0w0yT0

(T0 −M2
0w

2
0)2

]

+ψ1x

[
Ω
K0K0y

2y2w2
0

− w0yy

w0

+
ΩK2

0

4y2w0

M2
0w0y − T0y/w0 + Ω(γ − 1)M2

0K
2
0/(4y

2w0)

T0 −M2
0w

2
0

− 1

w0

(
w2

0

M2
0w0y − T0y/w0 + Ω(γ − 1)M2

0K
2
0/(4y

2w0)

T0 −M2
0w

2
0

)
y

]
= 0. (42)

Here we used P0y/ρ0 = γM2
0ΩK

2
0/4y

2.
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Integrating (42) with respect to x gives

ψ1yy +
ψ1xx

2y

T0 −M2
0w

2
0

T0

+ ψ1y

[
−γM

2
0ΩK

2
0

4y2T0

+
(T0 − 2M2

0w
2
0)T0y + 2M2

0w0w0yT0

(T0 −M2
0w

2
0)T0

]

+ ψ1

[(
Ω
K0K0y

2y2w2
0

− w0yy

w0

)
T0 −M2

0w
2
0

T0

+
ΩK2

0

4y2w0T0

(
M2

0w0y − T0y

w0

+ Ω(γ − 1)M2
0

K2
0

4y2w0

)

− T0 −M2
0w

2
0

w0T0

(
w2

0

M2
0w0y − T0y/w0 + Ω(γ − 1)M2

0K
2
0/(4y

2w0)

T0 −M2
0w

2
0

)
y

]
= 0. (43)

The boundary conditions for solving (43) are found from (7)–(13) and (31), (32):

ψ1(x, 0) = 0, ψ1(x, 1/2) = 0 for 0 6 x 6 x0, (44)

ψ1(0, y) = 0, ψ1x(x0, y) = 0 for 0 6 y 6 1/2. (45)

The problem formulated by (43) and (44)–(45) is an eigenvalue problem. The theory
of partial differential equations shows that such a problem has a non-trivial solution
only for a specific set of positive eigenvalues Ω = Ω1, Ω2, . . .. Following Wang & Rusak
(1996a, 1997a), we define the first eigenvalue Ω = Ω1 = ω2

1 as ‘the critical swirl ratio
for a compressible vortex flow in a finite-length pipe’. A standing small-disturbance
wave may appear on the columnar state at the critical swirl level. The solution of this
eigenvalue problem is

ψ1 = ψ1c(x, y) = Φ(y) sin

(
πx

2x0

)
, (46)

where Φ is the eigenfunction that corresponds to the critical state at Ω1 and both are
found from the solution of

Φyy + Φy

[
−γM

2
0Ω1K

2
0

4y2T0

+
(T0 − 2M2

0w
2
0)T0y + 2M2

0w0w0yT0

(T0 −M2
0w

2
0)T0

]

+ Φ

[(
Ω1

K0K0y

2y2w2
0

− w0yy

w0

− π2

8yx2
0

)
T0 −M2

0w
2
0

T0

+
Ω1K

2
0

4y2w2
0T0

(
M2

0w0w0y − T0y + Ω1(γ − 1)M2
0

K2
0

4y2

)

− T0 −M2
0w

2
0

w0T0

(
w0

M2
0w0w0y − T0y + Ω1(γ − 1)M2

0K
2
0/(4y

2)

T0 −M2
0w

2
0

)
y

]
= 0 (47)

with boundary conditions:

Φ(0) = Φ(1/2) = 0. (48)

It can be seen from the above equations that as M0 tends to zero (with T0 = 1) the
problem tends uniformly to the eigenvalue problem for computing the critical swirl
for an incompressible (constant temperature) columnar vortex flow in a finite-length
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pipe that was defined by Wang & Rusak (1996a, 1997a). Also, as both M0 tends to
zero and x0 tends to infinity, it is found that the present problem is reduced to the
eigenvalue problem defined by Benjamin (1962).

Using the solution for ψ1, the flow perturbations are given from (31), (32), (34),
(35), (39)–(41) and (46) by

u1 = −
(
π

2x0

)
Φ(y)√
2yρ0

cos

(
πx

2x0

)
, (49)

w1 =
1

ρ0(T0 −M2
0w

2
0)

[
T0Φy −

(
M2

0w0w0y − T0y +
γ − 1

γ

P0y

ρ0

)
Φ

]
sin

(
πx

2x0

)
, (50)

v1 =
ωK0y√
2yw0ρ0

Φ sin

(
πx

2x0

)
, (51)

ρ1 =
1

γM2
0w0(T0 −M2

0w
2
0)

[(
M2

0w0w0y − T0y +
γ − 1

γ

P0y

ρ0

)
Φ−M2

0w
2
0Φy

]
sin

(
πx

2x0

)
,

(52)

P1 =
w0

T0 −M2
0w

2
0

[(
w0y

w0

T0 − T0y +
γ − 1

γ

P0y

ρ0

)
Φ− T0Φy

]
sin

(
πx

2x0

)
, (53)

T1 =
w0

ρ0(T0 −M2
0w

2
0)

[(
γ − 1

γ

w0y

w0

T0

+
T0 − γM2

0w
2
0

γM2
0w

2
0

(
T0y − γ − 1

γ

P0y

ρ0

))
Φ− γ − 1

γ
T0Φy

]
sin

(
πx

2x0

)
. (54)

Here P0y/ρ0 = γM2
0Ω1K

2
0/4y

2.

4. Results
We first study the case where the inlet axial velocity and temperature profiles are

uniform, w0 = T0 = 1, and the circumferential velocity is given by a solid-body
rotation profile:

v0 = r or K0 = 2y. (55)

Then, the eigenvalue equation for determining the critical swirl becomes

Φyy − Φy(γM2
0Ω1) + Φ

[(
2Ω1

y
− π2

8x2
0y

)
(1−M2

0 ) + (γ − 1)Ω2
1M

2
0

]
= 0 (56)

with the boundary conditions (48). This is an ordinary differential equation that can
be solved by canned program like Matlab or Maple for 0 6M0 < 1 using a shooting
method. In all cases we choose Φy(0) = 1 to be the slope at y = 0.

Figure 1 shows the computed values of the critical swirl ω1 as function of Mach
number. It can be seen that ω1 increases with Mach number. As M0 approaches a
certain limit value M0 limit ∼ 0.925, ω1 becomes singular. The corresponding critical
eigenfunctions Φ for various Mach numbers are shown in figure 2. It can be seen that
as the Mach number is increased the perturbation becomes stronger and expands in
the radial direction. This is particularly clear from the functions Φy shown in figure 3.

The axial speed perturbation −w1 and the temperature perturbation −T1 which
correspond to the critical state in each case are computed from (50) and (54) and
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Figure 1. The effect of Mach number on the critical swirl number ω1 of a
solid-body rotation (x0 = 60.0).
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Figure 2. The critical eigenfunction Φ of a solid-body rotation for
various Mach numbers (x0 = 60.0).

shown in figures 4 and 5. Note that the negative values of w1 and T1 are used since
from the incompressible case it is expected that ε1 in (14)–(19) and (30) is negative.
It can be seen that the axial speed deceleration near the centreline and the related
temperature increase (which results from the balance of energy) are significantly
increased with the increase of Mach number M0. On the other hand, the axial speed
acceleration near the wall (resulting from the balance of mass in the pipe) and the
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Figure 3. The derivative of the critical function Φy of a solid-body rotation for
various Mach numbers (x0 = 60.0). Symbols as figure 2.
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Figure 4. The critical axial speed perturbation (−w1) of a solid-body rotation for
various Mach numbers (x0 = 60.0). Symbols as figure 2.

related temperature decrease (which results from the balance of energy) are reduced
with the increase of Mach number.

In the second case we study a Burgers vortex profile. We again assume that the
inlet axial velocity and temperature profiles are uniform, w0 = T0 = 1, and that the
circulation is given by

K0 = 1− e−2by. (57)
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Figure 5. The critical temperature perturbation (−T1) of a solid-body rotation for
various Mach numbers (x0 = 60.0). Symbols as figure 2.

Here b is a parameter related to the size of the vortex core radius, rc/rt = 1.12/
√
b.

Then, the eigenvalue equation for determining the critical swirl becomes

Φyy − Φy
[
γM2

0Ω1(1− e−2by)2

4y2

]
+Φ

[
− π2

8yx2
0

(1−M2
0 ) + (1− γM2

0 )
bΩ1

y2
e−2by(1− e−2by)

+ (γ − 1)M2
0

Ω1

2y2
(1− e−2by)2

(
1

y
+
Ω1

8y2
(1− e−2by)2

)]
= 0 (58)

with the boundary conditions from (48)

Φ(0) = Φ(1/2) = 0. (59)

We concentrate on a case where x0 = 60.0. Figure 6 shows the computed values of
the critical swirl ω1 as function of Mach number for various values of b (the core
size parameter). It can be seen that as the Mach number M0 is increased from zero
to about 0.7 the critical swirl ratio of the flow increases significantly. For example, for
the case with b = 4, increasing the Mach number from 0 to 0.6 and then to 0.66 results
in an increase of the critical swirl ratio from 0.883 to 1.420 and to 1.902, respectively.
Also, as the Mach number approaches a certain limit value M0 limit, which weakly
depends on b, the critical swirl reaches very large values and becomes singular and
no solution of the critical swirl can be found for M0 > M0 limit. For example, when
b = 1.254 it is found that M0 limit ∼ 0.695, when b = 4 then M0 limit ∼ 0.688, and when
b = 100 then M0 limit ∼ 0.684. Note that M0 limit slightly decreases as b increases or
the vortex core radius rc decreases.

The corresponding critical eigenfunctions Φ(y) in the case where b = 4 for various
Mach numbers are shown in figure 7. It can be seen that as the Mach number
is increased the perturbation becomes stronger and expands in the radial direction
(see also the related functions Φy for the case b = 4 shown in figure 8). The axial
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Figure 6. The effect of Mach number on the critical swirl number ω1 of a
Burgers vortex with x0 = 60.0.
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Figure 7. The critical eigenfunction Φ of a Burgers vortex with b = 4.0 and x0 = 60.0
for various Mach numbers.

speed perturbation −w1 and the temperature perturbation −T1 which correspond
to the critical state in each case are computed from (50) and (54) and shown in
figures 9 and 10 for the case b = 4. The axial speed deceleration and the related
temperature increase near the centreline are significantly increased with the increase
of Mach number M0. On the other hand, the axial speed acceleration and the related
temperature decrease near the wall are reduced with the increase of Mach number.
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Figure 8. The derivative of the critical function Φy of a Burgers vortex with b = 4.0 and x0 = 60.0
for various Mach numbers. Symbols as figure 7.
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Figure 9. The critical axial speed perturbation (−w1) of a Burgers vortex with b = 4.0 and
x0 = 60.0 for various Mach numbers. Symbols as figure 7.

The effect of changing the vortex core radius (by changing the parameter b) on the
critical swirl ratio Vmax/w0 = 0.63817ω1

√
b (where Vmax is the maximum value of ωv0

found at r = 1.12/
√
b) is demonstrated in figure 11 for various Mach numbers. It can

be seen that the critical swirl ratio increase with Mach number for every fixed core
radius. Also, for a fixed Mach number the critical swirl increases with the increase of
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Figure 10. The critical temperature perturbation (−T1) of a Burgers vortex with b = 4.0 and
x0 = 60.0 for various Mach numbers. Symbols as figure 7.
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Figure 11. The change of Vmax/w0 with the vortex core radius for
various Mach numbers (x0 = 60.0).

the vortex core size. Moreover, note that as the core radius tends to zero the critical
level for a fixed Mach number approaches a certain limit value. This limit value of
the critical swirl ratio for a vortex with a very thin core may be the critical swirl of
a vortex with a finite core size in a pipe with an infinitely large radius, i.e. of a free
vortex.
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5. Conclusions and discussion
The effect of compressibility on the critical swirl level for breakdown of subsonic

vortex flows in a circular pipe of finite length can be studied by a small perturbation
analysis. This work provides for the first time a theoretical analysis of the effect of
the flow Mach number on the critical swirl ratio. It extends the critical-state concept
of Benjamin (1962) to include the influence of Mach number on the flow behaviour.
It is found that when the characteristic Mach number of the base flow tends to zero
the eigenvalue problem and the critical swirl tend uniformly to that defined by Wang
& Rusak (1996a, 1997a) in their study of incompressible swirling flows in pipes. As
the characteristic Mach number is increased, the critical swirl level increases and the
flow perturbation expands in the radial direction. As the Mach number is increased
toward a certain limit value, which is related to the core size of the vortex, the critical
swirl reaches very large values and becomes singular. The limit Mach number may
be associated with the appearance of transonic effects which are beyond the scope
of this paper. For a fixed Mach number, the critical swirl ratio decreases with the
decrease in the vortex core radius and approaches a certain limit value as the core
size tends to zero. This limit value may be used to estimate the critical swirl of a free
vortex of a finite core size at a given characteristic Mach number.

Moreover, the present analysis shows that unlike the physical effects of small
viscosity, pipe divergence and inlet vorticity perturbations which were analysed in
Wang & Rusak (1997b), Rusak et al. (1998), and Rusak (1998) and which tend to
reduce the critical swirl, the flow compressibility shifts the critical (bifurcation) swirl
to higher values and keeps the transcritical nature of bifurcation, as in the case for an
incompressible flow. Such a crucial aspect of the dynamical behaviour of such flows
was not and cannot be predicted from numerical simulations or any previous study.

The increase of the critical swirl ratio with Mach number may be explained by the
following arguments. The vorticity transport equation for a compressible, and inviscid
flow is (see Thompson 1988, p. 73)(

ω̄

ρ̄

)
t̄

+ V · ∇
(
ω̄

ρ̄

)
=

(
ω̄

ρ̄

)
· ∇V +

1

ρ̄

(∇T × ∇s̄) , (60)

where V is the velocity vector and ω̄ = ∇ × V is the vorticity. Here we denote
as ζ̄, η̄, ξ̄ the radial, azimuthal and axial components of the vorticity. The specific
entropy is s̄. This equation describes the balance between the unsteady changes of
ω̄/ρ̄, the convection of ω̄/ρ̄, the stretching and tilting of ω̄/ρ̄, and the vorticity
production resulting from gradients of the thermodynamic properies of the flow such
as the temperature and specific entropy (a baroclinic effect). For an axisymmetric and
steady flow in a cylindrical coordinate system this equation for the azimuthal vorticity
η̄ becomes

w̄

(
η̄

ρ̄

)
x̄

+ ū

(
η̄

ρ̄

)
r̄

+
v̄

r̄

(
ζ̄

ρ̄

)
=
ζ̄

ρ̄
v̄r̄ +

ξ̄

ρ̄
v̄x̄ +

η̄

ρ̄

(
ū

r̄

)
+

1

ρ̄

(
T x̄s̄r̄ − T r̄s̄x̄

)
. (61)

Using the relations for axisymmetric flow ζ̄ = −v̄x̄ and ξ̄ = (r̄v̄)r̄/r̄ and letting η̄ = r̄χ̄
we find that (61) takes the form

w̄

(
χ̄

ρ̄

)
x̄

+ ū

(
χ̄

ρ̄

)
r̄

=
1

ρ̄r̄4
(K̄2)x̄ +

1

ρ̄r̄

(
T x̄s̄r̄ − T r̄s̄x̄

)
. (62)

Using Gibbs equation T ds̄ = Cp dT − dP̄ /ρ̄ and the radial and axial momentum
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equations (3) and (5), we find that

s̄r̄ = Cp
T r̄

T
+

1

T

(
ūūr̄ + w̄ūx̄ − K̄2

r̄3

)
,

s̄x̄ = Cp
T x̄

T
+

1

T
(ūw̄r̄ + w̄w̄x̄) .

 (63)

Also, from the circumferential momentum equation (4) we have K̄x̄ = −K̄r̄ū/w̄. Then,
(62) becomes

w̄

(−χ̄
ρ̄

)
x̄

+ ū

(−χ̄
ρ̄

)
r̄

=
2K̄K̄r̄ū

ρ̄w̄r̄4
+
K̄2

ρ̄r̄4

T x̄

T
+

1

ρ̄T r̄

(
T r̄ (ūw̄r̄ + w̄w̄x̄)− T x̄ (ūūr̄ + w̄ūx̄)

)
.

(64)

Equation (64) shows that the convection of the property (−χ̄/ρ̄) is balanced by
several terms on the right-hand side. The first term represents a stretching effect
resulting from the swirl and radial velocities and the density. The second term
represents a baroclinic effect resulting from the interaction between the swirl, density
and axial temperature gradient. Note that both terms are functions of the square of
the swirl level ω2 and of the inverse of density 1/ρ̄. The third term also represents a
baroclinic effect which results from the radial and axial velocity components, density
and radial and axial temperature gradients.

Using the vorticity transport equation (64) and the asymptotic expansions (14)–
(19) we can derive (42) and the resulting equation (43) (this is an alternative way
to derive these equations). This shows that (42) or (43) are essentially a linearized
version of the steady vorticity transport equation (64). The present small-disturbance
analysis in § 3 showed that under the given boundary conditions (7)–(12) the steady
linearized vorticity transport equation (43) with conditions (44)–(45) has a non-trivial
solution only at certain levels of swirl, and specifically at ω1, the critical swirl for a
copmressible vortex flow in a finite-length pipe. A standing small-disturbance wave
may appear on the columnar state at the critical swirl. In order to clarify the possible
physical meaning of the critical swirl, we refer to the stability study of Wang &
Rusak (1996a). They showed that the critical swirl for an incompressible and inviscid
vortex flow (where ρ̄ = constant and no baroclinic effects appear in (64)) is a level
of change of stability for the base columnar flow. When 0 6 ω < ω1, the flow is
characterized by a decaying mode of perturbation since the convective effects of the
property (−χ̄) dominate the other effects. At the critical swirl ratio ω1, the vortex
state has a neutral mode of perturbation which results from a critical balance between
the convective effects and the stretching effects which result from the swirl. When
ω > ω1, the stretching effects due to swirl dominate the convection of (−χ̄), interact
with the inlet conditions, and result in an unstable mode of perturbation which is
related to the critical eigenfunction. This unstable mode initiates the axisymmetric
vortex breakdown process (see Wang & Rusak 1997a and Rusak et al. 1998a for more
details). Although not proven yet, it is strongly expected that a similar behaviour
characterizes a compressible vortex flow as the swirl is changed around its critical
level, i.e. the critical swirl for a compressible and inviscid flow is also a level of change
of stability for the base columnar vortex flow.

Moreover, when (14)–(19) are used and T0(r) = 1 is assumed, it can be shown that
the third term on the right-hand side of (64) is on the order of ε2

1, much smaller
than the other terms in (64), and may be neglected. Then, the first two terms on
the right-hand side of (64) show that the change of density ρ̄ in the compressible
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case may also affect the level of swirl for a critical balance. In this case, a flow
perturbation with a positive radial speed (ū > 0) creates an axial speed deceleration
near the pipe centreline and a related increase in the temperature, Tx > 0, near the
centreline. Since in a steady compressible subsonic flow the specific entropy s̄ stays
constant along a streamline, the density ρ̄ also increases near the centreline. These
changes increase with the increase of the flow Mach number and affect the size of
the stretching and baroclinic effects in the terms in (64). Therefore, a higher level of
the swirl ratio ω is needed to create a critical balance. This means that the critical
swirl ω1 increases with the increase of compressibility effects in the flow and as the
characteristic Mach number M0 is increased from a near zero value to finite values.
The computed examples in § 4 demonstrate this result.

The theory of Wang & Rusak (1997a) also showed that the breakdown of an
incompressible vortex flow is strongly related to the critical level of swirl ω1. Again,
although not proven yet for the compressible flow case, there are strong reasons to
believe that this behaviour of vortex flows is similar when the flow is compressible.
Therefore, the present results indicate that the breakdown of compressible high-
Reynolds-number vortex flows may be delayed to higher swirl ratios with the increase
of the flow Mach number. This result becomes particularly important when the Mach
number is above 0.3 and may be relevant in the design of future high-performance
flight vehicles as well as turbo-machinery technologies.

This research was carried out with the support of the National Science Foundation
under Grant CTS-9804745.
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